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INTRODUCTION

Classical measurement theory has been used by psychologists
since roughly the turn of the century. The results of analyses
based on this theory continue to dominate the literature with
coefficients of internal consistency reliability and test-retest
reliability being commonly reported. The frequent reliance on
classical test theory is somewhat unfortunate given the development
of a broader and more powerful model for estimating the
dependability of scores from behavioral measurements- -
generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnum,
1972). As Jaeger (1991) notes, given the availability of this
newer measurement theory,

Thousands of social science researchers will no
longer be forced to rely on outmoded [classical
theory] reliability estimation procedures when
investigating the consistency of their measurements.
(Jaeger, 1991, p. x)

Although generalizability theory was developed several decades
ago, the majority of training programs in education and psychology
continue to focus on the more limited classical test theory
techniques for assessing score dependability. Consequently, the
purpose of the present paper is to discuss the elements of
generalizability and to explore the concepts of this theory using
a small heuristic data set.

REVIEW OF GENERALIZABILITY THEORY

The present discussion of the benefits of generalizability
theory will be brief, given space limitations. For a more in-depth
treatment of the topic, the reader is referred to Shavelson and
Webb (1991), Eason (1991), and Brennan (1983).

Generalizability theory subsumes and extends classical test
score theory. "G" theory is able to estimate the magnitude of the
multiple sources of error simultaneously. Therefore, sources of
error variance and interactions among these sources can be
considered simultaneously in a single generalizability analysis.
This is unlike classical test score analyses which allow for only
a single source of error to be considered at one time. Not only
does classical theory admit consideration of only one type of
measurement error at a time, the theory does not consider the
possible, completly independent or separate interaction effects of
the sources of measurement error variance. For example, test-
retest reliability estimates only consider variability (error) due
to time. Similarly, internal consistency coefficients are based
solely on variability (error) due to items. The test-retest
analysis does not consider variability due to items, nor does the
internal consistency analysis consider variability due to time.
The classical test theory approach to score dependability is
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graphically represented in Figure 1.

Simultaneous consideration both of multiple sources of error
variance and of the interactions of these error sources is
critical. An embedded assumption of many researchers using the
classical score approach is that sources of error substantially
overlap each other (e.g., the 15% of error from a test-retest
analysis is the essentially the same error as the 10% or 15%
measurement error detected in an internal consistency analysis) and
that the sources of error do not interact to create additional
error variance. As Thompson notes,

in addition to being unique and cumulative, the
sources [of error variance] may also interact to
define disastrously large interaction sources of
measurement error not considered in classical
theory. The effects of these assumptions are all the
more pernicious because of their unconscious
character. (Thompson, 1991, p. 1072)

Since the goal of research is usually to generalize over
items, occasions, test forms, administrations, etc.,
generalizability theory more closely honors the reality to which we
wish to generalize.

Generalizability also forces us to see that it is particular
scores, and not the tests themselves, that are reliable. Thus, the
common telegraphic expression, indicating that "the test is
reliable", is always literally untrue (Thompson, 1994). This habit
of speech should be abandoned.

D-STUDIES

One source of frustration to those acquainting themselves with
generalizability is the concept of D- and Design Studies and G- or
Generalizability Studies. G-Studies are the initial round of
analyses that generate variance components for the sources of error
in the study. D-studies employ these variance components to answer
questions about alternative measurement protocols. In addressing
these "what if" questions (e.g., what if I administer only half of
my items on two occasions? what if I use three raters instead of
two?), the sources of error in the current assessment protocol can
be pinpointed and the needed changes in the assessment regime
specified to achieve a desired level of generalizability.

Additionally, these analyses can be used to make decisions
regarding assessment with an acceptable cost-benefit ratio. If
using 40 rather than 20 items yields the same improvement in score
reliability as measuring three rather than two times with 20 items,
and administering the longer measure twice is more cost effective,
the researcher or practitioner is informed that the use of this
more efficient measurement protocol ia tenable.

4
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RELATIVE VERSUS ABSOLUTE DECISIONS

Generalizability analyses distinguish between decisions made
in the context of cutoff scores (absolute decisions), as against
decisions only considering stability in which relative standing is
a concern. Classical test theory does not admit a distinction
between reliability involving absolute decisions made in the
context of cutoff scores (e.g., intervention decisions invoking a
cutoff score for an early intervention program) as against
reliability involving decisions only considering stability in
relative standing or rankings (e.g., always using the top 25% of
samples for intervention even though score distributions over time
may move up or down in an absolute sense).

This distinction can be important, particularly when decisions
regarding intervention or subject selection are involved. Suppose
that a child has the highest depression score in the school. That
is relative position. If the score surpasses an identified
criterion for moderate-severe depression (an absolute criterion),
then an intervention will be conducted. If at the end of treatment
the child still has the highest depression score in school, but it
is now below the cut-off score, the treatment will likely be
considered successful. In generalizability studies the
coefficients that address reliability in the context of relative
decisiOns, i.e., decisions only concerned with the stability of
score rankings, are called generalizability coefficients. The
coefficients that address reliability in the context of absolute
decisions, i.e., decisions invoking cutoff score criteria, are
called phi coefficients.

"G" THEORY ANALYSIS USING A HEURISTIC EXAMPLE

The reasons why generalizability theory is important have been
summarized previously. Some of the required calculations will be
summarized in the following example. Though these are automated in
widely available software, this review may facilitate conceptual
understanding of the analysis.

More thorough reviews of the importance of generalizability
theory are available elsewhere (Eason, 1991; Shavelson, Webb, &

Rowley, 1989; Thompson, 1991). More thorough treatments of the
mechanics of the analysis are available from Shavelson and Webb
(1991) or Webb, Rowley, and Shavelson (1989), or at the more
advanced level from Brennan (1983, 1994).

Data

Table 1 presents a hypothetical data to illustrate these
calculations. The example involves 10 people who have taken a four
item test each of three times.
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Classical Test Score Analyses
Table 2 presents all the classical test theory reliability

estimates for the Table 1 data. Inspection of the table reveals
that the internal consistency of the data varied considerably
across occasions, from a high (and possibly acceptable level) of
.77 to a distressingly low .19. Similarly, the test-retest
coefficients ranged from a high of .68 to a low of -.08.

Partitioning of the Score Variance

As Brennan notes (1983), the variance components for the
data to be analyzed are central because "they are the building
blocks that provide a crucial foundation for all subsequent
analyses" (p. 11). Variance components can be calculated using an
ANOVA-type approach. There is the overall (grand) mean, and
variance component for each "main" effect (i.e., Individuals,
Occasion, Variables), and a variance component, for each
"interaction" effect (e.g., I x 0, I x V, 0 x V, I x 0 x V). The
variance components are represented graphically in Figure 2.

In generalizability theory, we partition the score variance
into its various uncorrelated components. First, we partition the
systematic variance (usually the variance associated with people,
since we usually presume this is "true" variance when people truly
vary as individuals) and error variance. Then we further partition
the error variance into its main effect and interaction effect
components.

ANOVA can be used to create orthogonal or uncorrelated
partitions of variance. First, we compute the sum-of-squares (SOS)
for the various variance sources, as illustrated in Table 3. These
sum-of-squares are then converted into mean squares and then into
variance components for scores, as illustrated in Table 4.

Next, the variance components for scores are converted in to
variance components for means, as illustrated in Table 5. Table 6
illustrates the use of these variance components to estimate the
proportion of score variance that is systematic for either making
relative decisions in which only stability of score ordering is
relevant, or for making absolute decisions in which stability of
scores in relation to a score cutoff or external criterion (e.g.,
a passing score criterion) is relevant.

CONCLUSIONS

Results of classical test theory and generalizability
estimates of the dependability of the same scores can be very
different.

Classical test score estimates ranged from .77 to -.08,
depending on the source of error considered. Generalizability
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estimates considered all sources of error simultaneously and
resulted in a "G" coefficient of .47 (phi coefficient = .42).

Additional calculations using the variance components could
identify specific ways that the dependability of the
measurement could be increased (e.g., increase the number of
items, increase the number of occasions).

The result from the small heuristic data set demonstrate the
necessity of moving away from a classical test theory approach
whenever multiple sources of measurement error are presumed to
exist simultaneously. These analyses further confirm other
comparisons between generalizability theory and classical test
theory presented in the literature (e.g., Crowley, Thompson,
& Worchel, in press).

Doctoral level training in measurement snould focus on
teaching generalizability theory as a more contemporary,
broader, and more powerful paradigm for assessing score
dependability.
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Table 1

Hypothetical Data for an Individuals x Occasion x Variables
Measurement Protocol

Rater #1 Rater #2 Rater #3
Variable Variable Variable

Person 1 2 3 4 1 2 3 4 1 2 3 4

1 8 5 4 4 4 2 3 4 5 6 2 0

2 5 2 6 6 6 4 4 4 6 6 4 1

3 2 0 2 2 4 2 2 -, 4 5 4 0 7

4 6 4 4 2 2 0 3 2 4 2 2 4

5 8 1 8 6 6 6 2 6 1 6 4 2

6 2 3 2 4 2 2 5 2 3 4
r

0 1

7 6 2 6 6 6 4 4 6 4 4 4 3

8 4 7 4 6 6 4 4 3 2 1 0 0

9 8 8 7 7 5 5 5 4 4 7 0 0

10 3 3 3 0 2 4 5 0 4 6 0 0

Bruce Thompson, 1994. All Rights Reserved. Used with Permission.

gen5a.wkl

Table 2

Classical alpha and Test-retest Correlation Coefficients
For the Table 1 Data

Administration
Administration a First Second Third

First .7737 1.0000

Second

Third

. 6311 .6787
(46.06%)

. 1875 -.0850
(00.72 %)

1.0000

.1331
01.77%

1.0000

Note. Squared test-retest correlation coefficients are presented in
parentheses as percentages.
Bruce Thompson, 1994. All Rights Reserved. Used with Permission.
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Table 3

Partitioning the Variability in the Table 1 Scores

SOS/ = (E ( R, - R)2) (o=3 (v=4))
=((3.92_3.683)2+(4.50_3.683)2+(2.33_3.683)2+(2.92_3.683)2+

(4.67 -3.683)2 +(2.50 -3.683)2 +(4.58 -3.683)2 +(3.42 -3.683)2+
(5.00 -3.683)2 +(2.50 -3.683)2) (o=3 (v=4))

= (0.0544 +0.6669 +0.7225 +0.5878 +
0.9669 +1.4003 +0.8100 +0.0711 +
1.7336 +1.4003) (o=3 (v=4))

= 8.4139 (o=3 (v=4)) = 8.4139 (12) = 100.9668

SOSO = (E ( XU - X.) 2) (i=10 (v=4))
= ((4.40 -3.683)2 +(3.70 -3.683)2 +(2.95 -3.683)2) (1=10 (v=4))
= (0.5136 +0.0003 +0.5378) (1=10 (v=4))
= 1.0517 (1=10 (v=4)) = 1.0517 (40) = 42.0666

SOS`, = (E ( R, 3) 2) (1=10 (o=3))
= (4.43 -3.683).2 +(3.80 r-3.683)2 -1--(3.30 -3.683)2 +(3.20 -3.683)2)

(1=10 (o=3))
= (0.5625 +0.0136 +0.1469 +0.23361)

(i =10 (o=3))
= 0.9567 (i =10 (o=3)) = 0.9567 (30) = 28.7000

sosm = (E ( R)2) (v=4) - SOS, - SOS0
= ((5.25 -3.683)2 +(3.25 -3.683)2 +(3.

(4.75 -3.683)2 +(4.50 -3.683)2 +(4.
(1.50 -3.683)2 +(3.00 -3.683)2 +(4.
(4.00 -3.683)2 +(1.75 -3.683)2 +(3.
(5.75 -3.683)2 +(5.00 -3.683)2 +(3.
(2.75 -3.683)2 +(2.75 -3.683)2 .1-(2
(5.00 -3.683)2 +(5.00 -3.683)2 +(3
(5.25 -3.683)2 +(4.25 -3.683)2 +(0
(7.50 -3.683)2 +(4.75 -3.683)2 +(2
(2.25 -3.683)2 +(2.75 -3.683)2 +(2

(v=4) - SOS, - SOS°
= ( 2.4544 +0.1878

1.1378 +0.6669
4.7669 +0.4669
0.1003 +3.7378
4.2711 +1.7336
0.8711 +0.8711
1.7336 +1.7336
2.4544 +0.3211

14.5669 +1.1378
2.0544 +0.8711

25 -3.683)2 +
25 -3.683)2 +
00 -3.683) 2 +
00 -3.683) 2 +
25 -3.683) 2 +
.00 -3.683) 2 +
.75 -3.683) 2 +
.75 -3.683)2 +
.75 -3.683)2 +
.50 -3.683) 2)

+0.1878 +
+0.3211 +
+0.1004
+0.4669 +
+0.1878 +
+2.8336 +
+0.0044 1+
+8.6044 +
+0.8711 +
+1.4003) (v=4) SOS, - SOS0

= 61.1166 (v=4) -100.9668 -42.0666
= 244.4664 -100.9668 -42.0666 = 101.4333

10
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= ((5.67 -3.683)2 +(4.33 -3.683)2 +(3.00 -3.683)2 +(2.67 -3.683)2 +
(5.67 -3.683)2 +(4.00 -3.683)2 +(4.67 -1.683)2 +(3.67 -3.683)2 +
(3.67 -3.683)2 +(2.00 -3.683)2 +(1.33 -3.683)2 +(4.33 -3.683)2 +
(4.00 -3.683)2 +(2.00 -3.683)2 +(3.00 -3.683)2 +(2-67 -3.683)2 +
(5.00 -3.683)2 +(4.33 -3.683)2 +(4.67 -3.683)2 +(4.67 -3.683)2 +
(2.33 -3.683)2 +(3.00 -3.683)2 +(2.32 -3.683)2 +(2.33 -3.683)2 +
(5.33 -3.683)2 +(3.33 -3.683)2 +(4.67 -3.683)2 +(5.00 -3.683)2 +
(4.00 -3.683)2 +(4.00 -3.683)2 +(2.67 -3.683)2 +(3.00 -3.683)2 +
(5.67 -3.683)2 +(6.67 -3.683)2 +(4.00 -3.683)2 +(3.67 -3.683)2 +
(3.00 -3.683)2 +(4.33 -3.683)2 +(2.67 -3.683)2 +(0.00 -3.683)2)

(o=3) SOS/ - SOSv
= (3.9336 +0.4225 +0.4669 +1.0336 +

3.9336 +0.1003 +0.9669 +0.0003 +
0.0003 +2.8336 +5.5225 +0.4225 +
0.1003 +2.8336 +0.4669 +1.0336 +
1.7336 +0.4225 +0.9669 +0.9669 +
1.8220 +0.4669 +1.8225 +1.8225 +
2.7220 +0.1225 +0.9669 +1.7336 +
0.1003 +0.1003 +1.0336 +0.4669 +
3.9336 +8.9003 +C 1003 +0.0003 +
0.4669 +0.4225 +1.0336 +13.5669)
(o=3) - SOS1 SOSv

= 69.7666 (o =3) -100.9668 -28.7000
= 209.3 -100.9668 -28.7000 = 79.6333

SOSov = (E Roy - )2) (i=10) SOS() - SOSv
(5.20 -3.683)2 +(3.50 -3.683)2 +(4.60 -3.683)2 +
(4.30 -3.683)2 +(4.30 -3.683)2 +(3.30 -3.683)2 +
(3.70 -3.683)2 +(3.50 -3.683)2 +(3.80 -3.683)2 +
(4.60 -3.683)2 +(1.60 -3.683)2 +(1.80 -3.683)2)
(i=10) - SOSO - SOSv

= (2.3003 +0.0336 +0.8403 +
0.3803 +0.3803 +0.1469 +
0.0003 +0.0336 +0.0136 +
0.8403 +4.3403 +3.5469) (i=10) - SOS() - SOSv
12.8566 (i=10) -42.0666 -28.7000

= 128.5666 -42.0666 -28.7000 = 57.8000

SOSIov = (E (rc, - X ) 2) - SOS1 - Soso - SOSv sos,0 - sosw - SOSov
=((8-3.683)2 +(5-3.683)2 +(4-3.683)2 +(4-3.683)2 +(4-3.683)2 +(2-3.683)2 +

(3-3.683)2 +(4-3.683)2 +(5-3.683)2 +(6-3.683)2 +(2-3.683)2 +(0-3.683)2 +

(5-3.683)2 +(2-3.683)2 +(6-3.683)2 +(6-3.683)2 +(6-3.683)2 +(4-3.683)2 +
(4-3.683)2 +(4-3.683)2 +(6-3.683)2 +(6-3.683)2 +(4-3.683)2 +(1-3.683)2 +

(2-3.683) 2 +(0-3.683)2 +(2-3.683)2 +(2-3.683)2 +(4-3.683)2 +(2-3.683)2 +
(2-3.683)2 +(4-3.683)2 +(5-3.683)2 +(4-3.683)2 +(0-3.683)2 +(7-3.683)2 +

(6-3.683)2 +(4-3.683)2 +(4-3.683)2 +(2-3.683)2 +(2-3.683)2 +(0-3.683)2 +
(3-3.683)2 +(2-3.683)2 +(4-3.683)2 +(2-3.683)2 +(2-3.683)2 +(4-3.683)2 +

(8-3.683)2 +(1-3.683)2 +(8-3.683)2 +(6-3.683)2 +(6-3.683) +(6-3.683)2 +

11
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(2-3.683)2 +(6-3.683)2 +(1-3.683)2 +(6-3.683)2 +(4-3.683)2 +(2-3.683)2 +

(2-3.683)2 +(3-3.683)2 +(2-3.683)2 +(4-3.683)2 +(2-3.683)2 +(2-3.683) +
(5-3.683)2 +(2-3.683)2 +(3-3.683)2 +(4-3.683)2 +(0-3.683)2 +(1-3.683)2 +

(6-3.683)2 +(2-3.683)2 +(6-3.683)2 +(6-3.683)= +(6-3.683)= +(4-3.683)2 +

(4-3.683)2 +(6-3.683)2 +(4-3.683)2 +(4-3.683)2 +(4-3.683)= +(3-3.683)2 +

(4-3.683)2 +(7-3.683)= +(4-3.683)= +(6-3.683)2 A-(6-3.683)2 +(4-3.683)2 +
(4-3.683)2 +(3-3.683)2 +(2-3.683)2 +(1-3.683)2 +(0-3.683)2 +(0-3.683)2 +

(8-3.683)2 +(8-3.683)2 +(7-3.683)= +(7-3.683)= +(5-3.683)2 +(5-3.683)2 +
(5-3.683)2 +(4-3.683)2 +(4-3.683)2 +(7-3.683)2 +(0-3.683)2 +(0-3.683)2 +

(3-3.683)2 +(3-3.683)2 +(3-3.683)2 +(0-3.683)2 +(2-3.683)2 +(4-3.683)2 +
(5-3.683)2 +(0-3.683)2 +(4-3.683)2 +(6-3.683)2 +(0-3.683)2 +(0-3.683) 2)
SOS, - Soso sosv - sosio - sosry - soSov

= (18.6336 +1.7336 +0.1003 +0.1003 +0.1003 +2.8336 +
0.4669 +0.1003 +1.7336 +5.3670 +2.8336 +13.5669 +
1.7336 +2.8336 +5.3670 +5.3670 +5.3670 +0.1003 +
0.1003 +0.1003 +5.3670 +5.3670 +0.1003 +7.2002 +
2.8336 +13.5669 +2.8336 +2.8336 +0.1003 +2.8336 +
2.8336 +0.1003 +1.7336 +0.1003 +13.5669 +11.0003 +
5.3670 +0.1003 +0.1003 +2.8336 +2.8336 +13.5669 +
0.4669 +2.8336 +0.1003 +2.8336 +2.8336 +0.1003 +

18.6336 +7.2002 +18.6336 +5.3670 +5.3670 +5.3670 +
2.8336 +5.3670 +7.2002 +5.3670 +0.1003 +2.8336 +
2.8336 +0.4669 +2.8336 +0.1003 +2.8336 +2.8336 +
1.7336 +2.8336 +0.4669 +0.1003 +13.5669 +7.2002 +
5.3670 +2.8336 +5.3670 +5.3'670 +5.3670 +0.1003 +
0.1003 +5.3670 +0.1003 +0.1003 +0.1003 +0.4669 +
0.1003 +11.0002 +0.1003 +5.3670 +5.3670 +0.1003 +
0.1003 +0.4669 +2.8336 +7.2002 +13.5669 +13.5669 +

18.6336 +18.6336 +11.0003 +11.0003 +1.7336 +1.7336 +
1.7336 +0.1003 +0.1003 +11.0003 +13.5669 +13.5669 +
0.4669 +0.4669 +0.4669 +13.5669 +2.8336 +0.1003 +
1.7336 +13.56691 +0.1003 +5.3670 +13.5669 +13.5669)

- SOS, SOS() SOSv SOSI0 -
= 555.9666 -100.9668 -42.0666

-101.4333 -79.6333

SOSw SOSov
28.7000

- 57.8000 = 145.3666

0 Bruce Thompson, 1994. All Rights Reserved. Used with Permission.
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Table 4

The Conversion of Sums-of-Squares to Mean Squares
and Then to Score Variance Components

Source

0

io
iv
ov
iov

(SOS /df =MS)
(100.9668 / 9 =11.2185)
(42.0666 / 2 =21.0333)
(28.7000 / 3 = 9.5667)

(101.4333 /18 = 5.6352)
(79.6333 /27 = 2.9494)
(57.8000 / 6 = 9.6333)

(145.3666 /54 = 2.6920)

+ ( MS MS MS
+ (-5.6352 -2.9494 +2.6920)
+ (-5.6352 -9.6333 +2.6920)
+ (-2.9494 -9.6333 +2.6920)
+ (-2.6920
+ (-2.6920
+ (-2.6920

= Sum
= 5.3259
= 8.4568
= -0.3240

2.9432
0.2574
6.9414
2.6920

Source Sum / (k (k))
Variance

= Sum / Product Components

i 5.3259 / (0 =3 (v=4)) 5.3259 / 12 0.4438
8.4568 / (i=10 (v=4)) 8.4568 / 40 0.2114

-0.3240 / (i=10 (o=3)) -0.3240 / 30 -0.0108
io 2.9432 / (v=4) 2.9432 / 4 0.7358
iv 0.2574 / (o=3) 0.2574 / 3 0.0858
ov 6.9414 / (i=10) 6.9414 / 10 0.6941
iov 2.6920 2.6920 2.6920

© Bruce Thompson, 1994. All Rights Reserved. Used with Permission.
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Table 5

Conversion of Score Variance Components
to Variance Components for Means

Source
Variance
Components Frequency

Variance
Componentm

i 0.44382 1 0.44382
o 0.21141 3 0.07047
v Oa 4 0

io 0.73580 3 0.24526
iv 0.08580 4 0.02145
ov 0.69413 12 0.05784
iov 2.69197 12 0.22433

Note. Variance Components is the variance component for single
observations originating in a given variance source. Variance
ComponentM is the variance component for mean scores originating in
a given variance source. The "object of measurement" (here
individual people, who are presumed to truly vary) has its
frequency set to 1.

aNegative variance components are set to 0 prior to further
calculations.

Bruce Thompson, 1994. All Rights Reserved. Used with Permission.
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Table 6

The Conversion of Variance Components Into
Proportions of Total Variance That are Systematic or Reliable

Source/ Variance
Statistic ComponentM %age

Systematic
Variance

Error
Variance
(Relative)

Error
Variance
(Absolute)

i 0.4438 41.74 0.4438
o 0.0705 6.28 0.0705
v 0 0 0

io 0.2453 23.07 0.2453 0.2453
iv 0.0214 2.02 0.0214 0.0214
ov 0.0578 5.44 0.0578
iov 0.2243 21.10 0.2243 0.2243

Sum 1.0632 0.4438 0.4910 0.6194

Coefficient
G 0.4747
Phi 0.4174

gen5a.wkl

Note. The proportion of measurement error associated with relative
decisions only evaluating rank-order score stability is evaluated
by the generalizability coefficient, and equals systematic variance
divided by total relevant variance ([0.4428 / (0.4438 + 0,4910)] =
0.4747). The proportion of measurement error associated with
absolute decisions evaluating score stability in relation to a
fixed score cut-off standard is evaluated by the phi coefficient,
and equals systematic variance divided by total relevant variance
([0.4428 / (0.4438 + 0.6194)] = 0.4174).

© Bruce Thompson, 1994. All Rights Reserved. Used with Permission.
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